Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 672
Filtrar
1.
Drug Des Devel Ther ; 18: 919-929, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560523

RESUMEN

Background: Magnesium sulfate, an intravenous adjuvant, has recently attracted immense attention in multimodal analgesia. Previous studies confirmed the crucial role of magnesium sulfate in postoperative pain and nociceptive hypersensitivity. However, the effect of magnesium sulfate in multimodal analgesia on the quality of recovery (QoR) for elderly patients has not been thoroughly studied. Therefore, the present experiment aimed to investigate the effect of continuous intravenous magnesium sulfate on the quality of postoperative recovery in elderly patients undergoing total knee arthroplasty (TKA). Patients and Methods: In this study, a total of 148 patients scheduled to undergo unilateral total knee arthroplasty were randomized into a magnesium sulfate group (Group M, n=68) and a control group (Group C, n=66) using a double-blind, randomized controlled trial. Before induction of anesthesia, Group M received intravenous magnesium sulfate (40 mg/kg) for 15 min, followed by a continuous infusion (15 mg/kg) until the end of the procedure. In the same manner, Group C received an infusion of the same amount of isotonic saline using the same method as the Group M. Results: Compared with Group C, Group M had significantly better QoR-15 scores on postoperative day 1(POD1) than Group C (P <0.05). Analysis of the dimensions of QoR-15 scores indicated that Group M exhibited notably reduced levels of pain, and higher levels of emotional state and physical comfort than Group C (P <0.05). Furthermore, Group C had significantly higher numerical rating scale (NRS) scores at POD1 than Group M (P <0.05). Conclusion: For elderly patients undergoing knee arthroplasty, magnesium sulfate can be used as an adjuvant in a multimodal analgesic regimen to reduce early postoperative pain and improve the quality of early postoperative recovery.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Sulfato de Magnesio , Humanos , Anciano , Sulfato de Magnesio/uso terapéutico , Estudios Prospectivos , Analgésicos , Dolor Postoperatorio/tratamiento farmacológico , Método Doble Ciego , Analgésicos Opioides
2.
Front Oncol ; 14: 1322680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562177

RESUMEN

Purpose: To assess the prognostic significance of ß2-microglobulin decline index (ß2M DI) in multiple myeloma (MM). Methods: 150 MM patients diagnosed with MM were enrolled in this study. Cox proportional hazards model was used to analyze the uni- and multivariate prognosis in training cohort (n=105). A new combined prognostic model containing ß2M DI was built up based on the data in training cohort. The validation group was used to verify the model. Results: ß2M DI showed significant correlation with prognosis in both uni- and multivariate analyses and had a good correlation with complete response (CR) rate and deep remission rate. The ROC and calibration curves in validation cohort (n=45) indicated a good predictive performance of the new model. Based on the median risk score of the training group, we classified patients into high- and low- risk groups. In both training and validation groups, patients in the low-risk group had longer overall survival (OS) time than that in the high-risk group (p<0.05). Conclusion: ß2M DI is a good predictive index for predicting treatment response and survival time in MM patients. The prognostic model added with ß2M DI showed a better correlation with OS.

3.
Mol Genet Genomic Med ; 12(4): e2426, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562046

RESUMEN

BACKGROUND: Mandibulofacial dysostosis with microcephaly (MFDM, OMIM# 610536) is a rare monogenic disease that is caused by a mutation in the elongation factor Tu GTP binding domain containing 2 gene (EFTUD2, OMIM* 603892). It is characterized by mandibulofacial dysplasia, microcephaly, malformed ears, cleft palate, growth and intellectual disability. MFDM can be easily misdiagnosed due to its phenotypic overlap with other craniofacial dysostosis syndromes. The clinical presentation of MFDM is highly variable among patients. METHODS: A patient with craniofacial anomalies was enrolled and evaluated by a multidisciplinary team. To make a definitive diagnosis, whole-exome sequencing was performed, followed by validation by Sanger sequencing. RESULTS: The patient presented with extensive facial bone dysostosis, upward slanting palpebral fissures, outer and middle ear malformation, a previously unreported orbit anomaly, and spina bifida occulta. A novel, pathogenic insertion mutation (c.215_216insT: p.Tyr73Valfs*4) in EFTUD2 was identified as the likely cause of the disease. CONCLUSIONS: We diagnosed this atypical case of MFDM by the detection of a novel pathogenetic mutation in EFTUD2. We also observed previously unreported features. These findings enrich both the genotypic and phenotypic spectrum of MFDM.


Asunto(s)
Discapacidad Intelectual , Disostosis Mandibulofacial , Microcefalia , Humanos , Microcefalia/patología , Disostosis Mandibulofacial/genética , Disostosis Mandibulofacial/patología , Fenotipo , Mutación , Discapacidad Intelectual/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo
4.
Ann Med Surg (Lond) ; 86(4): 1977-1982, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38576914

RESUMEN

Background: Patients undergoing intestinal tumour surgery are fasted preoperatively for a series of bowel preparations, which makes it difficult to assess the patients' volume, posing a challenge to intraoperative fluid replacement. Besides, inappropriate fluid therapy can cause organ damage and affect the prognosis of patients, and it increases the burden of patients and has a certain impact on patients and families. Material and methods: The authors designed a single-centre, prospective, single-blinded, randomized, parallel-controlled trial. Fifty-four patients undergoing elective radical resection of colorectal cancer were selected and divided into two groups according to whether transesophageal echocardiography (TEE) was used or not during the operation, that is the goal-directed fluid therapy (GDFT) group (group T) guided by TEE and the restrictive fluid therapy group (group C). Fluid replacement was guided according to left ventricular end-diastolic volume index (LVEDVI) in group T and according to restrictive fluid replacement regimen in group C. Results: The first postoperative exhaust time and defecation time in group T [(45±21), (53±24) h] were significantly shorter (P<0.05) than those in group C [(63±26), (77±30) h]. There were no significant differences (P>0.05) in liquid intake time and postoperative nausea and vomiting incidences between the two groups. The total intraoperative fluid volume in group T was significantly higher (P<0.05) than that in group C. There was no significant difference (P>0.05) in urine volume between the two groups. There were no significant differences (P>0.05) in lactate content, mean arterial pressure, and heart rate at various time points between the two groups. The length of hospital stay in group C [(18±4) days] was significantly longer (P<0.05) than that in group T [(15±4) days]. Conclusions: For patients undergoing colorectal cancer surgery, fluid therapy by monitoring LVEDVI resulted in faster recovery of gastrointestinal function and shorter hospital stay.

5.
Adv Sci (Weinh) ; : e2401195, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582501

RESUMEN

Neutrophil extracellular traps (NETs) seriously impede diabetic wound healing. The disruption or scavenging of NETs using deoxyribonuclease (DNase) or cationic nanoparticles has been limited by liberating trapped bacteria, short half-life, or potential cytotoxicity. In this study, a positive correlation between the NETs level in diabetic wound exudation and the severity of wound inflammation in diabetic patients is established. Novel NETs scavenging bio-based hydrogel microspheres 'micro-cage', termed mPDA-PEI@GelMA, is engineered by integrating methylacrylyl gelatin (GelMA) hydrogel microspheres with cationic polyethyleneimine (PEI)-functionalized mesoporous polydopamine (mPDA). This unique 'micro-cage' construct is designed to non-contact scavenge of NETs between nanoparticles and the diabetic wound surface, minimizing biological toxicity and ensuring high biosafety. NETs are introduced into 'micro-cage' along with wound exudation, and cationic mPDA-PEI immobilizes them inside the 'micro-cage' through a strong binding affinity to the cfDNA web structure. The findings demonstrate that mPDA-PEI@GelMA effectively mitigates pro-inflammatory responses associated with diabetic wounds by scavenging NETs both in vivo and in vitro. This work introduces a novel nanoparticle non-contact NETs scavenging strategy to enhance diabetic wound healing processes, with potential benefits in clinical applications.

6.
J Food Sci ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563092

RESUMEN

Although the benefits of sugarcane polyphenol (SP) are well documented, its function in preventing photoaging has not yet been investigated. This study aimed to investigate the protective effects of SP in preventing ultraviolet (UV)-B-induced skin photoaging in Balb/c mice, as well as the underlying mechanism. Chlorogenic acid was determined to be the primary component of SP by using high-performance liquid chromatography-mass spectrometry. SP and chlorogenic acid were orally administrated to mice for 56 days, and UV-B radiation exposure was administered 14 days after SP and chlorogenic acid administration and lasted 42 days to cause photoaging. SP and chlorogenic acid administrations significantly alleviated the UV-B-induced mouse skin photoaging, as indicated by the decrease in epidermal thickness, increase in the collagen (COL) volume fraction, and elevation in type 1 and type 3 COL contents. Notably, both SP and chlorogenic acid effectively reversed the overexpression of matrix metalloproteinase induced by UV-B exposure in the mouse skin. Furthermore, SP and chlorogenic acid reduced the expression of receptor for advanced glycosylation end products in the mice; amplified the activities of antioxidant enzymes superoxide dismutase and catalase; reduced malondialdehyde levels; and decreased inflammatory cytokines interleukin 1ß, interleukin 6, and tumor necrosis factor α levels. SP could be a prospective dietary supplement for anti-photoaging applications due to its antioxidant, anti-inflammatory, and anti-glycosylation attributes, and chlorogenic acid might play a major role in these effects. PRACTICAL APPLICATION: This study can provide a scientific basis for the practical application of sugarcane polyphenols. We expect that sugarcane polyphenols can be used in food and beverage products to provide flavor while combating skin aging.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38563312

RESUMEN

Arteriovenous fistula (AVF) is the most commonly used vascular access for hemodialysis in patients with end-stage renal disease. Vascular diseases such as atherosclerosis and thrombosis, triggered by altered hemodynamic conditions, are the main causes of access failure. Changes in blood viscosity accelerate access dysfunction by affecting local velocities and wall shear stress (WSS) distribution in the circulation. Numerical simulation was employed to analyze and compare the hemodynamic behavior of AVF under different blood viscosities (0.001-0.012 Pa∙s). An idealized three-dimensional model with end-to-side anastomosis was established. Transient simulations were conducted using pulsatile inlet velocity and outflow as boundary conditions. The simulation results reveal the blood flow state of AVF under different viscosity physiological conditions and derive the rule of change. When blood viscosity increases, the local velocity in the disturbed region slows down and the stagnation time becomes longer, resulting in increased deposition of substances. As blood viscosity increases, the level of shear stress on the entire wall of the fistula increases accordingly. WSS values at high viscosities above 0.007 Pa∙s showed significantly larger low-shear regions near the anastomosis and increased chances of inducing atheromatous plaques. This research has revealed the correlation between blood dynamic viscosity and the hemodynamic behavior of AVF. Elevated whole blood viscosity increases the incidence of access obstruction and vascular disease leading to fistula failure. The study provides a basis for optimizing the distribution of hemodynamic parameters in the fistula for hemodialysis patients.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38658517

RESUMEN

People tend to employ suboptimal attention control strategies during visual search. Here we question why people are suboptimal, specifically investigating how knowledge of the optimal strategies and the time available to apply such strategies affect strategy use. We used the Adaptive Choice Visual Search (ACVS), a task designed to assess attentional control optimality. We used explicit strategy instructions to manipulate explicit strategy knowledge, and we used display previews to manipulate time to apply the strategies. In the first two experiments, the strategy instructions increased optimality. However, the preview manipulation did not significantly boost optimality for participants who did not receive strategy instruction. Finally, in Experiments 3A and 3B, we jointly manipulated preview and instruction with a larger sample size. Preview and instruction both produced significant main effects; furthermore, they interacted significantly, such that the beneficial effect of instructions emerged with greater preview time. Taken together, these results have important implications for understanding the strategic use of attentional control. Individuals with explicit knowledge of the optimal strategy are more likely to exploit relevant information in their visual environment, but only to the extent that they have the time to do so.

9.
Biomater Adv ; 160: 213859, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38642515

RESUMEN

Triple-negative breast cancer (TNBC) is a highly invasive and metastatic subtype of breast cancer that often recurs after surgery. Herein, we developed a cyclodextrin-based tumor-targeted nano delivery system that incorporated the photosensitizer chlorin e6 (Ce6) and the chemotherapeutic agent lonidamine (LND) to form the R6RGD-CMßCD-se-se-Ce6/LND nanoparticles (RCC/LND NPS). This nanosystem could target cancer cells, avoid lysosomal degradation and further localize within the mitochondria. The RCC/LND NPS had pH and redox-responsive to control the release of Ce6 and LND. Consequently, the nanosystem had a synergistic effect by effectively alleviating hypoxia, enhancing the production of cytotoxic reactive oxygen species (ROS) and amplifying the efficacy of photodynamic therapy (PDT). Furthermore, the RCC/LND NPS + light weakened anoikis resistance, disrupted extracellular matrix (ECM), activated both the intrinsic apoptotic pathway (mitochondrial pathway) and extrinsic apoptotic pathway (receptor death pathway) of anoikis. In addition, the nanosystem showed significant anti-TNBC efficacy in vivo. These findings collectively demonstrated that RCC/LND NPS + light enhanced the anticancer effects, induced anoikis and inhibited tumor cell migration and invasion through a synergistic effect of chemotherapy and PDT. Overall, this study highlighted the promising potential of the RCC/LND NPS + light for the treatment of TNBC.

10.
Materials (Basel) ; 17(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591422

RESUMEN

It is a challenge to polish the interior surface of a small bent pipe with complex structures and sizes less than 0.5 mm. This is because of the fact that traditional polishing methods could destroy, block, or break the small complex structures. For a small bent pipe made of aluminum alloy produced using additive manufacturing, the defects, such as adhered powders and spatters, are easy to jam the pipe without polishing, possibly resulting in catastrophic failure for aerospace applications. To overcome this challenge, a novel water jet polisher was developed using soft polymethyl methacrylate (PMMA) abrasives. After polishing a specific area, the adhered powders on the interior surface were reduced from over 140 to 2, 3, and 6 by the soft abrasives with mesh sizes of 200, 400, and 600, respectively. The surface roughness Sa was decreased from 3.41 to 0.92 µm after polishing using PMMA abrasives with a mesh size of 200. In comparison, silica abrasives were also employed to polish the small bent pipes, leading to the bent part of pipes breaking. However, this kind of failure was absent when using soft abrasives. Computational fluid dynamics calculations elucidate that a peak erosion rate of silica abrasives for a bent pipe with a turn angle of 30° is 2.18 kg/(m2·s), which is 17 times that of soft abrasives. This is why the small bent pipe was broken using silica abrasives, whereas it remained intact when polished with soft abrasives. In addition, water jet polishing has a lower erosion rate, a relatively smooth erosion curve, and less erosion energy, leaving the bent parts intact. The developed soft abrasive water jet polisher and the findings of this study suggest new possibilities for cleaning the adhered powders and spatters and polishing the interior surface of small bent pipes with complex structures.

11.
Cell Mol Life Sci ; 81(1): 120, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456906

RESUMEN

Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.


Asunto(s)
Lesión Pulmonar Aguda , Ácidos Grasos , Animales , Ácidos Grasos/metabolismo , Inflamación , Lipopolisacáridos , Pulmón/metabolismo , Obesidad/metabolismo , Humanos
12.
Zhongguo Fei Ai Za Zhi ; 27(2): 126-132, 2024 Feb 20.
Artículo en Chino | MEDLINE | ID: mdl-38453444

RESUMEN

Liquid biopsy is gradually being applied in the clinical diagnosis and treatment of lung cancer. At present, with the development of metabolomics, more and more metabolic biomarkers are considered as potential sensitive markers reflecting the occurrence and development of tumors. This article summarizes the changes in the main metabolic pathways of lung cancer, including glucose metabolism, amino acid metabolism, lipid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and purine metabolism. Meanwhile, this article reviews the role of metabolic biomarkers in the early diagnosis of lung cancer, predicting disease progression, and evaluating the efficacy of chemotherapy and immunotherapy, aiming to provide effective biomarkers for tumor diagnosis and treatment.
.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares , Humanos , Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Metabolómica , Redes y Vías Metabólicas , Biopsia Líquida
13.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475133

RESUMEN

As the frequency of natural disasters increases, the study of emergency communication becomes increasingly important. The use of federated learning (FL) in this scenario can facilitate communication collaboration between devices while protecting privacy, greatly improving system performance. Considering the complex geographic environment, the flexible mobility and large communication radius of unmanned aerial vehicles (UAVs) make them ideal auxiliary devices for wireless communication. Using the UAV as a mobile base station can better provide stable communication signals. However, the number of ground-based IoT terminals is large and closely distributed, so if all of them transmit data to the UAV, the UAV will not be able to take on all of the computation and communication tasks because of its limited energy. In addition, there is competition for spectrum resources among many terrestrial devices, and all devices transmitting data will bring about an extreme shortage of resources, which will lead to the degradation of model performance. This will bring indelible damage to the rescue of the disaster area and greatly threaten the life safety of the vulnerable and injured. Therefore, we use user scheduling to select some terrestrial devices to participate in the FL process. In order to avoid the resource waste generated by the terrestrial device resource prediction, we use the multi-armed bandit (MAB) algorithm for equipment evaluation. Considering the fairness issue of selection, we try to replace the single criterion with multiple criteria, using model freshness and energy consumption weighting as reward functions. The state of the art of our approach is demonstrated by simulations on the datasets.

14.
Nat Microbiol ; 9(4): 1075-1088, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553607

RESUMEN

Although vaccines are available for SARS-CoV-2, antiviral drugs such as nirmatrelvir are still needed, particularly for individuals in whom vaccines are less effective, such as the immunocompromised, to prevent severe COVID-19. Here we report an α-ketoamide-based peptidomimetic inhibitor of the SARS-CoV-2 main protease (Mpro), designated RAY1216. Enzyme inhibition kinetic analysis shows that RAY1216 has an inhibition constant of 8.4 nM and suggests that it dissociates about 12 times slower from Mpro compared with nirmatrelvir. The crystal structure of the SARS-CoV-2 Mpro:RAY1216 complex shows that RAY1216 covalently binds to the catalytic Cys145 through the α-ketoamide group. In vitro and using human ACE2 transgenic mouse models, RAY1216 shows antiviral activities against SARS-CoV-2 variants comparable to those of nirmatrelvir. It also shows improved pharmacokinetics in mice and rats, suggesting that RAY1216 could be used without ritonavir, which is co-administered with nirmatrelvir. RAY1216 has been approved as a single-component drug named 'leritrelvir' for COVID-19 treatment in China.


Asunto(s)
COVID-19 , Vacunas , Humanos , Animales , Ratones , Ratas , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Cinética , Lactamas , Nitrilos , Ratones Transgénicos
15.
ACS Infect Dis ; 10(4): 1201-1211, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457660

RESUMEN

Tuberculosis (TB) is the leading infectious disease caused by Mycobacterium tuberculosis and the second-most contagious killer after COVID-19. The emergence of drug-resistant TB has caused a great need to identify and develop new anti-TB drugs with novel targets. Indole propionic acid (IPA), a structural analog of tryptophan (Trp), is active against M. tuberculosis in vitro and in vivo. It has been verified that IPA exerts its antimicrobial effect by mimicking Trp as an allosteric inhibitor of TrpE, which is the first enzyme in the Trp synthesis pathway of M. tuberculosis. However, other Trp structural analogs, such as indolmycin, also target tryptophanyl-tRNA synthetase (TrpRS), which has two functions in bacteria: synthesis of tryptophanyl-AMP by catalyzing ATP + Trp and producing Trp-tRNATrp by transferring Trp to tRNATrp. So, we speculate that IPA may also target TrpRS. In this study, we found that IPA can dock into the Trp binding pocket of M. tuberculosis TrpRS (TrpRSMtb), which was further confirmed by isothermal titration calorimetry (ITC) assay. The biochemical analysis proved that TrpRS can catalyze the reaction between IPA and ATP to generate pyrophosphate (PPi) without Trp as a substrate. Overexpression of wild-type trpS in M. tuberculosis increased the MIC of IPA to 32-fold, and knock-down trpS in Mycolicibacterium smegmatis made it more sensitive to IPA. The supplementation of Trp in the medium abrogated the inhibition of M. tuberculosis by IPA. We demonstrated that IPA can interfere with the function of TrpRS by mimicking Trp, thereby impeding protein synthesis and exerting its anti-TB effect.


Asunto(s)
Mycobacterium tuberculosis , Propionatos , Triptófano-ARNt Ligasa , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Triptófano-ARNt Ligasa/genética , Triptófano-ARNt Ligasa/química , Triptófano-ARNt Ligasa/metabolismo , ARN de Transferencia de Triptófano/metabolismo , Indoles/farmacología , Adenosina Trifosfato
16.
Int J Biol Macromol ; 264(Pt 1): 130479, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431003

RESUMEN

This work reports an improved enzyme-linked immunosorbent assay (ELISA) via the interaction between prussian blue nanoparticles (PBNPs) and amines for aflatoxin B1 (AFB1) detection. The effect of different amines on the structure and properties of PBNPs was systematically investigated. Amines with pKb < 7, like ethylenediamine (EDA), can decompose structure of PBNPs, leading to the reduction of extinction coefficient and photothermal effect. Whereas, amines with large pKb > 7, such as o-phenylenediamine (OPD), could undergo catalytic oxidation by PBNPs, resulting in the production of fluorescent and colored oxidation products. Accordingly, EDA and OPD were used to construct improved ELISA. Specifically, silica nanoparticles, on which AFB1 aptamer and amino binding agent (ethylenediaminetetraacetic acid disodium salt, EDTA•2Na) were previously assembled via carboxyl-amino linkage, are anchored to microplates by AFB1 and antibody. EDA concentration can be regulated by EDTA•2Na to affect extinction coefficient and photothermal effect of PBNPs, thereby achieving visual colorimetric and portable photothermal signal readout (Model 1). OPD concentration can also be controlled by EDTA•2Na, thus generating colorimetric and ultrasensitive fluorescent signals through PBNPs catalysis (Model 2). The proposed strategy not only opens new avenue for signal readout mode of biosensing, but also provides universal technique for hazards.


Asunto(s)
Técnicas Biosensibles , Ferrocianuros , Nanopartículas , Aflatoxina B1/análisis , Aminas , Nanopartículas/química , Ensayo de Inmunoadsorción Enzimática , Técnicas Biosensibles/métodos , Límite de Detección
17.
Chem Sci ; 15(13): 4631-4708, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550685

RESUMEN

Carbon dioxide (CO2) conversion has attracted much interest recently owing to its importance in both scientific research and practical applications, but still faces a bottleneck in selectivity control and mechanism understanding owing to diversified active sites. Single-atom catalysts (SACs) featuring isolated and well-defined active centers are proved to not only exhibit unparalleled performances in various processes of CO2 conversion but also provide excellent research paradigms by circumventing the heterogeneity of active sites. Herein, we will not only critically review recent progress on the application of SACs in chemical CO2 conversion based on previous comprehension of general thermodynamics and kinetics, but also try to offer a multi-level understanding of SACs from a molecular point of view in terms of the central atom, coordination environment, support effect and synergy with other active centers. Meanwhile, crucial scientific issues of research methods will be also identified and highlighted, followed by a future outlook that is expected to present potential aspects of further developments.

18.
J Invest Dermatol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38537929

RESUMEN

Bullous pemphigoid (BP) is a subepidermal blistering skin disease with a complex pathogenesis involving various immune cells. However, the transcriptional features of these cells remain poorly defined. Here, we construct a comprehensive and single-cell resolution atlas of various immune cells within BP skin lesions via integrative single-cell analysis, flow cytometry and multiplex immunohistochemistry. We observed prominent expansion and transcriptional changes in mast cells, macrophages, basophils, and neutrophils within BP lesions. Mast cells within the lesions adopted an active state and exhibited an elevated capacity for producing pro-inflammatory mediators. We observed an imbalance of macrophages/dendritic cells within BP lesions. Two macrophage subpopulations (NLRP3+ and C1q+) with distinct transcriptional profiles were identified and up-regulated effector programs. T peripheral helper (Tph)-like Th2 cells were expanded in skin lesions and peripheral blood of BP patients and were capable of promoting B cell responses. Additionally, we observed clonally expanded GZMB+ CD8+ T cells within BP lesions. Chemokine-receptor mapping revealed the potential roles of macrophages and mast cells in recruiting pathogenic immune cells and underlying mechanisms within BP lesions. Thus, this study reveals key immune-pathogenic features of BP lesions, thereby providing valuable insights for potential therapeutic interventions in this disease.

19.
Mar Environ Res ; 196: 106434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460223

RESUMEN

The adverse impacts of microplastics (MPs) or ocean acidification (OA) on mollusks have been widely reported, however, little is known about their combined effects on mollusks. The oysters Crassostrea gigas were exposed to two sizes of polystyrene MPs with 1 × 104 particles/L (small polystyrene MPs (SPS-MPs): 6 µm, large polystyrene MPs (LPS-MPs): 50-60 µm) at two pH levels (7.7 and 8.1) for 14 days. The antagonistic effects between MPs and OA on oysters were mainly observed. Single SPS-MPs exposure can induce CAT enzyme activity and LPO level in gills, while LPS-MPs exposure alone can increase PGK and PEPCK gene expression in digestive glands. Ocean acidification can increase clearance rate and inhibit antioxidant enzyme activity, whereas combined exposure of OA and SPS-MPs can affect the metabolomic profile of digestive glands. This study emphasized that the potential toxic effects of MPs under the scene of climate change should be concerned.


Asunto(s)
Crassostrea , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Crassostrea/metabolismo , Poliestirenos/toxicidad , Plásticos , Agua de Mar , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Contaminantes Químicos del Agua/metabolismo , Antioxidantes , Biomarcadores/metabolismo
20.
Small ; : e2311132, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511553

RESUMEN

Metal phthalocyanine molecules with Me-N4 centers have shown promise in electrocatalytic CO2 reduction (eCO2R) for CO generation. However, iron phthalocyanine (FePc) is an exception, exhibiting negligible eCO2R activity due to a higher CO2 to *COOH conversion barrier and stronger *CO binding energy. Here, amine functional groups onto atomic-Fe-rich carbon dots (Af-Fe-CDs) are introduced via a one-step solvothermal molecule fusion approach. Af-Fe-CDs feature well-defined Fe-N4 active sites and an impressive Fe loading (up to 8.5 wt%). The synergistic effect between Fe-N4 active centers and electron-donating amine functional groups in Af-Fe-CDs yielded outstanding CO2-to-CO conversion performance. At industrial-relevant current densities exceeding 400 mA cm-2 in a flow cell, Af-Fe-CDs achieved >92% selectivity, surpassing state-of-the-art CO2-to-CO electrocatalysts. The in situ electrochemical FTIR characterization combined with theoretical calculations elucidated that Fe-N4 integration with amine functional groups in Af-Fe-CDs significantly reduced energy barriers for *COOH intermediate formation and *CO desorption, enhancing eCO2R efficiency. The proposed synergistic effect offers a promising avenue for high-efficiency catalysts with elevated atomic-metal loadings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...